Processing NGS Data – assembly strategies

What to do with all this data?

Where we are

- 13:30-14:00 Primer Design to Amplify Microbial Genomes for Sequencing
- 14:00-14:15 Primer Design Exercise
- 14:15-14:45 Molecular Barcoding to Allow Multiplexed NGS
- 14:45-15:15 Processing NGS Data de novo and mapping assembly
- 15:15-15:30 Break
- 15:30-15:45 Assembly Exercise
- 15:45-16:15 Annotation
- 16:15-16:30 Annotation Exercise
- 16:30-17:00 Submitting Data to GenBank

Filtering NGS Data

- Once you have the reads for a particular sample (say after they have been sorted by barcode) it is important to use high quality data that is also free of sequence that was not an artifact of your protocols
- Low quality data and sequencing artifacts can break de novo assemblies or cause false variations to appear in mapping assemblies

Quality Trimming

- When sequencing, in addition to the bases (A, C, G, T, and maybe N), there are associated quality values (qv)
- The qv is usually defined as

 $qv = -10 \log_{10} p_{error}$

- qv 10 -> 1 in 10 chance of being wrong
- o qv 20 -> 1 in 100
- qv 30 -> 1 in 1000

Software to filter low quality

- Tools exist in most bioinformatics packages
- I tend to use a Perl program named TrimBWAstyle.pl
- I also tend to use a qv cutoff of 20

Sequence Artifacts

- Major sources of sequence artifacts
 - PCR primers they can still work when they are an imperfect match to the template, and they usually "win" in the final data
 - Adaptors from the NGS vendor often a problem at ends of reads, especially if the input DNA had short fragments
 - Untrimmed barcodes

Sequence artifacts

- For adaptors and barcodes remaining at ends of reads, multiple software again depending on tools you use
- For PCR primers, might be more tricky...
 - If the amplicon was sequenced by itself, you can trim the primer sequences after assembly
 - If amplicons were pooled and then sequenced, need to examine assemblies more closely, looking at the priming sites, and not trusting reads that end in the priming site

De Novo Assembly

- Ideal for samples without a close relative to serve as a reference sequence
- Also for Metagenomic Assembly

INPUT:

 Paired-end, mate pair or single short "fragment" DNA sequences

OUTPUT:

- Novel Consensus Sequence

Popular Software:

- ABYSS ALLPATHS(-LG)
- Celera cap3
- CLC Newbler
- SOAP Velvet

NSTI

Mapping/Reference Assembly

- As there are many de novo assemblers, there are also many mapping and aligning tools available
- At JCVI, I use CLC Bio command line tools on a Linux cluster
- At the next session, I'll show the use of Newbler and hopefully BWA/SAMTOOLS

Reference Assembly with **CLC** (Linux)

- CLC command line tools != GUI equivalents
 - clc_ref_assemble_long -o assembly.cas -q unpaired1.fasta -p fb ss
 180 250 -i paired_1.qf paired_2.qf –d reference1.gb
 - Requires pre-processed seq data for correct mate placement
 - No restriction of maximum read length
 - <u>long:</u> read length > 36 bp, <u>short:</u> read length <= 36</p>
 - Method:
 - Mismatch score-based, local, gapped alignment results in list of optimal match locations
 - When non-specific matches are found, choose randomly (fast but may cause chimeras)
 - For mates, placement choices are decided upon using input insert length bounds but may be placed 'as fragments' if such requirements are not met.
 - Output is in 'cas' format, a proprietary CLC format analyzed by other NGS Cell tools...*
 J. Craig Venter

SNP/Indel Detection Using **CLC** Output

Command Line (NGS Cell)

- Use tool 'find_variations' for SNP and DIP calls
 - Different calculation method than that used by the GUI platform!
- Input format = 'cas' output of CLC Reference Assembler
 - (requires prior CLC NGS cell reference assembly)
- Method :
- WHEN a base has sufficient coverage for comparisons (usr input)...
 - **IF** difference between the reference assembly consensus and reference
 - OR fraction of variant calls > fractional cutoff (optional usr input)
 - **OR** number of variant calls > numerical cutoff (optional usr input)
 - Call Variant in this location

Output

```
ctg1129645366355:
```

```
9362 Deletion A -> -
33298 Difference C -> T
34024 Insert - -> A
```


Reference Assembly with **CLC** (Genomics Workbench)

 Same basic algorithm, but with different capabilities regarding use of sequencing info

ed libs

• Cons:

- Must import data, More user-dependent
- Higher chance of software failure
- Can only use **ONE** insert size for all mated libs

• Pros:

- Option for Global Alignment
- Can utilize annotation information, can annotate problem regions
- Gives output compatible with RNA-seq tools, better SNP/DIP detection and post-assembly analysis with GUI tools
- Output also includes reference assembly table and ability to generate 'ACE'-type alignnment output.
- Post-assembly analysis includes quality information

SNP/Indel Detection Using **CLC** Output

GUI SNP Detection

- Based on 'Neighborhood Quality Standard algorithm [<u>Altshuler et al., 2000</u>]
- More variables available for this tool than the CLC command line equivalent

Benefits of Workbench Version

- Can annotate reference with SNPs
- Tabular output with more SNP info
- Output can be easily converted for DBSNP submission

	Quality									
	Window length (must be odd) 11									
,	Maximum number of gaps and mismatches 2									
,	Minimum average quality of surrounding bases 15									
	Minimum quality of central base 20									
	Significance									
	Non-specific and low-quality matches are ignored during SNP detection.									
	Minimum coverage 4									
	Minimum variant frequency (%) 35									
	Advanced									
	Minimum paired coverage 0									
	Maximum coverage 25									
	Minimum variant count required 1 and sufficient 5									
	Ploidy									
	Maximum expected variations 1									

INSTITUT

Mapping	Reference	Consensus	Variation T	Reference	Variants	Allele Varia	Frequencies	Counts	Coverage	Overlappin	Amino Acid
scf7180000	984	984	SNP	G	1	Α	100.0	14	14	Conflict: Co	
scf7180000	985	985	SNP	A	1	т	100.0	14	14	Conflict: Co	
scf7180000	841	839	SNP	т	1	С	100.0	12	12	Conflict: Co	
scf7180000	2663	2661	SNP	G	1	A	71.4	5	7	Conflict: Co	
scf7180000	2831	2829	Complex SNP	С	2	A/C	50.0/50.0	2/2	4	Conflict: Co	
scf7180000	525	462	Complex SNP	G	2	G/T	64.7/35.3	11/6	17	Conflict: Co	
J. Craig Venter											

SNP/Indel Detection Using **CLC** Output

GUI DIP Detection

 More variables available for this tool than cmd line version

Benefits of Workbench Version

- Can annotate reference with DIPs
- Tabular output with more DIP info
- Used along with SNP output for DBSNP submission

Minimum coverage 4
Minimum variant frequency (%) 35
Advanced
Minimum paired coverage 0
Maximum coverage 25
Minimum variant count required 1 and sufficient 5

Mapping	Reference	Consensus	Variation T	Length	Reference	Variants	Allele Varia	Frequencies	Counts	Coverage
scf7180000	2316110	2312177	DIP	1	-	1	С	60.0	3	5
scf7180000	2560552	2556619	DIP	3	TAT	1		60.0	3	5
scf7180000	2560850	2556917	DIP	2	AT	1		62.5	5	8
scf7180000	2814885	2810948	Complex DIP	1	Α	2	-/A	50.0/50.0	2/2	4
scf7180000	3097595	3093664	DIP	1	-	1	т	100.0	4	4
scf7180000	3888810	3883712	Complex DIP	1	т	2	т/-	50.0/50.0	2/2	4

Processing of NGS multiplexed data (Rotavirus example)

Processing of NGS multiplexed data (Rotavirus example, conc.)

Time for First Break

 See you at 15:30 when you will try assembling a viral genome yourself

